Chem. Ber. 112, 3441 – 3452 (1979)

Komplexchemie polyfunktioneller Liganden, 51¹⁾

Über Halogeno- und Pseudohalogeno-mangan(I)-carbonyl-Komplexe des tritertiären Phosphans 1,1,1-Tris[(diphenylphosphino)methyl]ethan

Jochen Ellermann*, Helmut A. Lindner und Matthias Moll

Institut für Anorganische Chemie der Universität Erlangen-Nürnberg, Egerlandstr. 1, D-8520 Erlangen

Eingegangen am 29. Januar 1979

 $[\dot{M}n(CO)_3(R_2PCH_2)_3CCH_3][\dot{M}n(CO)_5]$ (R = C₆H₅) (2) setzt sich mit HX in wäßriger Lösung (X = Cl, Br, I) zu [Mn(CO)_3(R_2PCH_2)_3CCH_3]X (4a-c) um. 4a reagiert mit NaN₃ unter Metathese zu 4d (X = N₃). Bei der Bestrahlung mit UV-Licht lagern sich die ionischen Komplexe 4a-d in die nicht ionischen, monomeren Komplexe XMn(CO)₃(R₂PCH₂)₂C(CH₃)CH₂PR₂ (5a-d) um. 5e (X = NCO) erhält man durch Umsetzung von [Mn(CO)₃(R₂PCH₂)₃CCH₃]Y (Y = ClO₄, BR₄) (3a, b) mit KOCN bei UV-Bestrahlung. Der potentiell dreizähnige Ligand CH₃C(CH₂PR₂)₃ (1) wirkt in 5 lediglich zweifachkoordinierend monometallisch. Erhitzt man 5a - e in Aceton, so entstehen unter Eliminierung von CO XMn(CO)₂(R₂PCH₂)₃CCH₃ (6a - e). Diese sind einfacher durch direkte Reaktion von 3a, b mit Alkalimetallhalogeniden und -pseudo-halogeniden MX (M = Na, K; X = Cl, Br, I, N₃, NCO) bei gleichzeitiger UV-Bestrahlung in Methanol zugänglich. Die Verbindungen wurden durch Leitfähigkeitsmessungen und spektro-skopisch charakterisiert.

Complex Chemistry of Polyfunctional Ligands, 51¹⁾

About Halogeno- and Pseudohalogeno-manganese(I)-carbonyl Complexes of the Tritertiary Phosphane 1,1,1-Tris[(diphenylphosphino)methyl]ethane

 $[\overset{+1}{Mn}(CO)_3(R_2PCH_2)_3CCH_3][\overset{-1}{Mn}(CO)_5]$ (R = C₆H₅) (2) reacts with aqueous HX (X = Cl, Br, I) to give $[Mn(CO)_3(R_2PCH_2)_3CCH_3]X$ (4a - c). 4a undergoes metathesis with NaN₃ to yield 4d (X = N₃). On ultraviolet irradiation the ionic 4a - d rearrange to the nonionic, monomeric complexes $XMn(CO)_3(R_2PCH_2)_2C(CH_3)CH_2PR_2$ (5a - d). 5e (X = NCO) is obtained from the reaction of $[Mn(CO)_3(R_2PCH_2)_3CCH_3]Y$ (Y = ClO₄, BR₄) (3a, b) with KOCN under UV irradiation. The potentially tridentate ligand $CH_3C(CH_2PR_2)_3$ (1) serves in 5 as a bidentate monometallic ligand. Boiling of 5a - e in acetone leads to CO elimination and formation of $XMn(CO)_2(R_2PCH_2)_3CCH_3$ (6a - e). These compounds are more easily obtained by the direct reaction of 3a, b with alkali metal halides and pseudohalides MX (M = Na, K; X = Cl, Br, I, N₃, NCO) on ultraviolet irradiation in methyl alcohol. The new complexes have been characterized by conductimetry and spectroscopy.

Kürzlich fanden wir, daß photochemische Umsetzungen kationischer, triphosphansubstituierter Cobaltcarbonyl-Komplexe mit Alkalimetallhalogeniden und -pseudo-

© Verlag Chemie, GmbH, D-6940 Weinheim, 1979

0009-2490/79/1010-3441 \$ 02.50/0

halogeniden zu neuen Halogeno- und Pseudohalogenocobalt(+I)-Komplexen führen²). Es lag nahe, diesen Reaktionstyp auf analoge kationische, triphosphansubstituierte Tricarbonylmangan(+I)-Komplexe zu übertragen. Sie sind, wie bereits früher für 3a - cgezeigt³) und wie im folgenden ergänzend für die Halogenid- und Pseudohalogenid-Komplexe 4a - d mitgeteilt, gemäß den Gleichungen (1)-(4) zugänglich.

Präparative Ergebnisse

a) Kationische Tricarbonylmangan(+I)-Komplexe

Setzt man 2^{3} in Aceton mit ca. 20 proz. wäßrigen Halogenwasserstofflösungen HX (X = Cl, Br, I) um, so bilden sich die farblosen bis hellgelben 4a - c [Gl. (3)]. Sie fallen aus der Reaktionslösung als gemischte H₂O/HX-Solvate an (4a mit ca. 1 Mol H₂O und 1 Mol HCl; 4b mit etwa 1 Mol H₂O und 0.5 Mol HBr). Der Solvatgehalt ist bei 4c praktisch gleich Null. Durch Umkristallisieren aus CH₂Cl₂/Petrolether und mehrtägiges Trocknen

 $R = C_6 H_5$ $2 + EY \longrightarrow [Mn(CO)_3(R_2PCH_2)_3CCH_3]Y + EMn(CO)_5$ (2) $2 + HX \longrightarrow [Mn(CO)_3(R_2PCH_2)_3CCH_3]X + HMn(CO)_5$ (3) $X = Cl, Br, I \qquad \frac{4}{x} = \frac{b}{c} \frac{c}{d}$ $4a + NaN_3 \longrightarrow 4d + NaCl$ (4)4a-d $\xrightarrow{h\nu}$ XMn(CO)₃(R₂PCH₂)₂C(CH₃)CH₂PR₂ (5) 5 a b c d e 3a, b + KOCN $\xrightarrow{h\nu}$ 5e + KY (6)5a-e $\xrightarrow{\text{thermisch}}$ XMn(CO)₂(R₂PCH₂)₃CCH₃ + CO (7)6 a b c d e X Cl Br I No NCO **3a, b** + MX $\xrightarrow{h\nu}$ 6 + CO + MY (8) $M = Na bzw.K; X = Cl, Br, I, N_3, NCO$

im Hochvakuum läßt sich der Solvatanteil zwar vermindern, jedoch erhält man keine völlig solvensfreien Verbindungen 4a, b. Bei den noch zu besprechenden Umsetzungen stört der H₂O- bzw. HX-Gehalt nicht. So reagiert 4a, gelöst in Chloroform mit überschüssigem Natriumazid⁴⁾ zu farblosem 4d [Gl. (4)], das nach Umkristallisieren aus Wasser mit 1 Mol H₂O auskristallisiert. Leitfähigkeitsmessungen in Chloroform weisen 4a – d als 1:1-Elektrolyte aus.

b) Halogeno- und Pseudohalogenotricarbonylmangan(+1)-Komplexe

Bestrahlt man die Salze 4a - d in Methylenchlorid mit UV-Licht, so lagern sie sich unter Eliminierung der Solvatmoleküle und unter Freisetzung von jeweils einer koordinierten Phosphangruppe zu den nichtionischen Halogeno- und Pseudohalogenokomplexen 5a - d [Gl. (5)] um. Bei dieser Reaktion läßt es sich allerdings nicht vermeiden, daß, bevor 4a - d quantitativ in 5a - d umgewandelt werden, in geringem Maße bereits eine Folgereaktion unter CO-Substitution gemäß (7) zu 6a - d einsetzt. Die Darstellung von 5e erfolgte photochemisch durch direkte Umsetzung von 3a bzw. 3b mit KOCN in Aceton. Auch hier tritt in geringem Umfange eine Weiterreaktion zu 6e gemäß (7) ein. Die Abtrennung der Hauptreaktionsprodukte 5 von den Nebenprodukten 6 und den ionischen Ausgangsverbindungen 4a - d bzw. 3a, b gelingt am besten durch Extraktion mit Benzol (5d, e) und anschließende zweimalige Säulenchromatographie an neutralem Aluminiumoxid.

Die hell- (5a, d, e) bis mittelgelben (5b, c) Neutralkomplexe zeigen in Chloroform erwartungsgemäß keine Leitfähigkeit und sind auf Grund von Molmassenbestimmungen im gleichen Lösungsmittel monomer zu formulieren.

Bemerkenswert erscheint, daß Lösungen von $4\mathbf{a} - \mathbf{d}$ in Methylenchlorid bei rein thermischer Behandlung (bis ca. 40°C) nicht in $5\mathbf{a} - \mathbf{d}$ überführbar sind.

c) Halogeno- und Pseudohalogenodicarbonylmangan(+I)-Komplexe

Erhitzt man 5a-e in Aceton unter Rückfluß, so entstehen unter Eliminierung von CO die bicyclischen Komplexe 6 in ca. 80 proz. Ausbeute [Gl. (7)].

Einfacher und ebenfalls in ähnlich guten Ausbeuten erhält man 6a - e, wenn man, ohne den Umweg über die entsprechenden Zwischenprodukte 4 und 5, direkt 3a bzw. b mit Alkalimetallhalogeniden und -pseudohalogeniden umsetzt. Hierzu wird das in Methanol gelöste 3a bzw. b in Gegenwart von suspendiertem Alkalimetallhalogenid oder -pseudohalogenid mit UV-Licht bestrahlt. Unter Eliminierung von CO entstehen die nicht ionischen Komplexe 6 [Gl. (8)]. Sie zeigen in Chloroform keine Leitfähigkeit. Molmassenbestimmungen in Chloroform bestätigen den monomeren Charakter von 6a - e.

Bestrahlt man ein Gemisch aus **3a** bzw. **b** und NaF in Methanol mit UV-Licht, so wird keine Umsetzung beobachtet; die Reaktionslösung färbt sich lediglich schwach gelb. Gibt man nun KF zu, so entfärbt sich das Reaktionsgemisch und riecht intensiv nach Phosphan. Es tritt offensichtlich Zersetzung ein, eine Umsetzung zu $FMn(CO)_2(R_2PCH_2)_3CCH_3$ findet nicht statt. Bemerkenswert erscheint auch, daß im Gegensatz zur entsprechenden Cobaltcarbonylchemie²⁾ Suspensionen bestehend aus in Methanol gelöstem **2** und Alkalimetallhalogeniden bzw. -pseudohalogeniden MX bei der Bestrahlung mit UV-Licht nicht zu reinem **6** und MMn(CO)₅ reagieren, sondern Gemische geben, die neben **6** andere Reaktions- und Zersetzungsprodukte enthalten. Sie wurden nicht weiter untersucht.

Spektren

Die Schwingungsspektren des in den Tricarbonyl-Komplexen $4\mathbf{a} - \mathbf{d}$ enthaltenen oktaedrischen fac-[Mn(CO)₃(R₂PCH₂)₃CCH₃]⁺-Kations wurden bereits früher³) eingehend untersucht.

Bei den nicht ionischen Tricarbonyl-Komplexen 5 können die CO-Gruppen entweder facial (A) oder meridianal (B) angeordnet sein. In beiden Fällen besitzen die XMn(CO)₃P₂-Koordinationspolyeder eine lokale C_s -Symmetrie. Dementsprechend sind jeweils drei IR- und Raman-aktive v(CO)-Banden (2 A' + A'') zu erwarten. Zwischen beiden Strukturen kann nur auf Grund der Intensitätsverhältnisse der v(CO)-Banden im IR-Spektrum unterschieden werden ⁵⁻¹⁴). Aus dem Auftreten von drei v(CO)-Banden mit nahezu gleicher Intensität (Tab. 1) folgt für **5a** – e jeweils faciale Anordnung der drei CO-Gruppen ¹³⁾ (A). Bei Vorliegen einer meridianalen Struktur B sollte die kürzestwellige der drei v(CO)-Banden im IR-Spektrum nur von schwacher Intensität sein ⁵⁻¹⁴).

Von den sechs IR- und Raman-aktiven $\delta(MnCO)$ -Schwingungen (3 A' + 3 A'') konnten nur vier aufgefunden werden, die drei v(MnC)-Banden (2 A' + A'') sind nur im Raman-Spektrum (Tab. 1) zweifelsfrei zuzuordnen. Sie erscheinen hier mit mittlerer Intensität und heben sich deutlich von den wenigen, äußerst intensitätsschwachen Deformationsschwingungen des Phosphanliganden 1 ab. Im IR-Spektrum liegen die Verhältnisse umgekehrt. Die intensiven Deformationsbanden von 1 überdecken die schwachen v(MnC)-Banden. Von **5a**-e konnten keine einwandfreien Raman-Lösungsspektren erhalten werden, da das Streuvermögen der Verbindungen nicht ausreichend war.

In 5a – c stehen die Halogene *trans* zu einer CO-Gruppe. Dies führt in den Festkörper-Raman-Spektren zu intensiven v(MnX)-Banden, welche einen deutlichen Massengang zeigen und somit eindeutig zuzuordnen sind ^{15–20)}. Von den zwei zu erwartenden v(MnP)-Banden der Rassen A' und A'' wird nur eine (MnP)-Valenzschwingung beobachtet (Tab. 1).

Die Spektren der Pseudohalogen-Komplexe **5d** und e enthalten unter anderem fünf charakteristische Banden, welche in erster Näherung als Gruppenfrequenzen der (Mn-N=N=N)- bzw. (Mn-N=C=O)-Gruppierung anzusprechen sind^{2,4)}. Das Cyanat-Ion ist in **5e** N-koordiniert, wie die Lage der Frequenzen von v_{as} und v_{s} (NCO) zeigen^{4, 21, 22)}.

Die neuen Dicarbonylkomplexe 6 müssen *cis*-Konfiguration der CO-Gruppen besitzen, da in jedem Fall zwei intensive v(CO)-Banden gefunden werden (Tab. 2). Nachdem das tritertiäre Phosphan 1 dreizähnig nur facial koordinieren kann²³⁾, ist damit die Struktur eindeutig bestimmt (C). Das oktaedrische XMn(CO)₂P₃-Koordinationspolyeder der bicyclischen Komplexe 6 besitzt jeweils eine lokale C_s -Symmetrie. Die geringen

	Tab. 1. (Charakteristisc	che Schwingu	ingsbanden (cn	n ⁻¹) von XM ₁	n(CO) ₃ (R ₂ PC)	H ₂) ₂ C(CH ₃)C	H ₂ PR ₂ (5, R =	$= C_6H_5$	
Zuord- nung	5a (X IR ^{a)}	= CI) Ra ^{b)}	5b (X IR ^{a)}	= Br Ra ^{b)}	5c (X IR ^{a)}	= I) Ra ^{b)}	5d (X IR a)	$= N_3)$ Ra ^{b)}	5 e (X = IR ⁴⁾	NCO) Ra ^{b)}
v _{as} (NCO)									2238 m – st	2234 s, br
$v_{as}(N_3)$							2060 sst	2047 s, br		
v(CO)2A'	2039 sst	2030 m – st	2039 sst	2029 m	2036 sst	2023 m	2020 m	2007 s, br	2018 st	2027 m
+ A ″	1969 st 1914 st	1968 st 1804 m	1970 st 1910 st	1961 m – st 1894 m	1968 st 1911 et	1957 m – st 1893 m	1961 m 1917 m	1956 s – m 1908 s – m	1962 st 1920 m - et	1957 m – st 1910 m – st
v _s (NCO)	10 11/1		10 01 01		10 11/1	HICOL	m . 171		1325 m 3.	1324 s – m
v _s (N ₃)							1218 s			
δ(MnCO)	672 m 642 m	675 s – m 638 se	669 m 630 m	668 s 639 ss	669 m 637 m	668 s 646 s	672 m 648 s - m	671 s 647 s	673 m 650 s - m	672 s
δ,γ(NCO)	11 710		II 000	80 100		2	H Coo		638 m	639 s
δ,γ(N ₃)							633 m	633 s		
a(CCC) ^{d)}	618 Sch ₁	618 m J	618 Sch ₁	618 m J	618 Sch ₁	618 m]	618 Sch ₇	618 m J	620 Sch ₁	618 m – st
δ(MnCO)	614 m]	608 ss Sch	611 m]	606 Sch]	611 m J	600 Sch	614 m]	608 Sch	615 m J	604 s
δ,γ(NCO)									596 m]° 582 m]°	594 s
δ(MnCO)	568 s	567 s, br	585 s, br	575 s, br	572 s – m	571 s – m, b.	r 578 m		565 s – m	566 s – m
$\delta, \gamma(N_3)$							561 s – m	562 s-m		
v(MnC)2A'		497 s – m		502 m		501 m		497 m		497 m
+ A"		462 m		475 m		471 m		466 m		464 m - st
		450 s – m		456 S		456 s – m		452 s – m		451 m
v(MnN)							347 m	348 m	316 m	320 s – m
v(MnX)	275 m – st	278 m – st	218 m	217 m – st ₇	189 m	188 st				
v(MnP)		204 m		200 Sch		203 m – st		203 s-m		213 m
Abkürzungen: ⁴⁾ Die Substan	sst = sehr sta zen wurden wi	rk, st = stark, ie folgt vermes	m = mittel, ssen: 4000 –	s = schwach, s 1700 cm ⁻¹ in (s = sehr schw CH, CI,, 1700	vach, br = bre -400 cm^{-1} fe	it, Sch = Schu st in KBr und	ılter. İ unterhalb 4(00 cm ⁻¹ in Pol	yethylen ver-
preßt. – ^{b)} Fe:	stkörperspektr	en. – ^{c)} Krist	alleffekt, in C	H ₂ Cl ₂ nur ein	e Bande. – ^d	¹ Zuordnung n	iach D. H. Wh	iffen, J. Chem.	Soc. 1956, 135	, ,

1979

Chemische Berichte Jahrg. 112

228

	Tab	. 2. Charakterist	tische Schwir	ngungsbanden (cm ⁻¹) von XMn(CO) ₂ (R ₂ PCH ₂) ₃ (CH_{3} (6, $R = C$	₆ H ₅)	
Zuord-	6a (X	= CI)	6b (X	(= Br)	6c (X = I)	ed (X =	N.)	6e (X =	NCO)
gunu	IR ^{a)}	Ra ^{b)}	IR ^{a)}	Ra ^{b)}	IR ^{4, c)}	IR ^{a)}	(Ra ^{h)}	IR ^{a)}	Ra ^{b)}
v _{as} (NCO)							1	2238 st	
$v_{as}(N_3)$						2048 sst			
v(CO)A'	1955 st	1946 s – m	1953 st	1940 s	1949 st	1949 m – st	1913 s	1963 st	1939 s-m
+ A"	1895 st	1884 m – st	1892 st	1885 s – m	1891 st	1892 m – st	1876 m	1903 st	1878 m – st
v _s (NCO)								$1314 \mathrm{m}^{\mathrm{d})}$	1315 s – m
$v_s(N_3)$						1228 s ^{d)}	1228 ss		
δ(MnCO)	649 m	648 ss	649 m	644 ss	649 m	650 s – m	652 s	650 m	650 s
δ,γ(NCO)								625 m	625 Sch ₁
$\delta, \gamma(N_3)$						625 s – m			
α(CCC) ^{e)}	620 s	618 m	621 ss	618 m	620 s	unter $\delta, \gamma(N_3)$	618 m	unter δ,γ(NC	O) 619 m J
δ(MnCO)	608 m - st	604 s – m	606 m	602 s – m	603 m – st	617 s – m		618 m	605 s
δ,γ(NCO)								594 Sch ₇	595 Sch 7
$\delta, \gamma(N_3)$						592 Sch ₁			
δ(MnCO)	582 m – st	583 s-m	582 m	582 s – m	581 m – st	587 m]	588 s-m	585 m J	582 s – m J
δ(MnCO)	539 s-m	536 m	540 ss	531 m	539 s–m	540 s	541 m	537 s – m	540 s – m
v(MnC)A'		498 m		502 m - st			501 m - st		510 m
+ A ″		473 m		473 m			474 m		4/3 s – m
Abkürzungen	wie in Tab. 1.							-	-

²⁰ Die Substanzen wurden in CH₂Cl₂-Lösung vermessen. – ^{b)} Festkörperspektren. – ^{e)} Vom braunen **6c** konnte kein Raman-Spektrum erhalten werden (nicht ausreichendes Streuvermögen). – ⁴⁾ Aus Festkörperspektren (KBr-Preßlinge), da in diesem Bereich Lösungsmittelbanden auftreten. – ⁴⁾ Zuordnung nach *D. H. Whiffen*, J. Chem. Soc. **1956**, 1350.

1979

Intensitätsunterschiede der zwei v(CO)-Banden (A' + A'') in den IR-Spektren deuten auf sehr kleine Verzerrungen der oktaedrischen Anordnung hin²⁴⁾.

Weiterhin erwartet man für 6 vier δ (MnCO)- (2 A' + 2 A'') und zwei v(MnC)-Schwingungen (A' + A''), welche alle aufgefunden werden konnten (Tab. 2). Eine Rassenzuordnung ist leider nicht möglich, da für Raman-Polarisationsmessungen die Löslichkeiten zu gering sind.

(MnX)-Valenzschwingungen wurden schon mehrfach zugeordnet $^{15-20)}$. Bei den Verbindungen XMn(CO)₅ findet man in den FIR-Spektren v(MnX)¹⁵⁾ bei 291 (X = Cl), 218 (X = Br) und 185 cm⁻¹ (X = I) als sehr starke Banden. In den Komplexen 6 befinden sich im Gegensatz zu zahlreichen in der Literatur $^{15-20)}$ beschriebenen Verbindungen die Halogene in *trans*-Stellung zur tertiären Phosphangruppe. Dabei verlieren anscheinend die (MnX)-Valenzschwingungen derart an Intensität, daß sie weder in den FIR- noch in den Raman-Spektren aufgefunden werden können. Es treten zwar im Erwartungsbereich zahlreiche Banden auf, welche aber keinen eindeutigen Massengang erkennen lassen und damit eine Zuordnung unmöglich machen.

Gleiches gilt bei den Verbindungen **6d** und **e** für v(MnN), welche nicht aufgefunden werden konnten. Die anderen vier charakteristischen Schwingungen der (MnN₃)- bzw. (MnNCO)-Gruppierung sind jedoch vorhanden und wurden entsprechend zugeordnet^{2, 4}) (Tab. 2). Aus der Bandenlage von v_{as} und v_s (NCO) ist zu ersehen, daß das NCO⁻-Ion über Stickstoff an das Mangan gebunden ist²¹).

Die weiterhin zu erwartenden drei IR- und Raman-aktiven v(MnP)-Banden (2A' + A'') konnten ebenfalls nicht von den vorhandenen Ligandenbanden unterschieden werden.

Von den Verbindungen 5a-e bzw. 6a-e konnten keine auswertbaren ¹³C-NMR-Spektren erhalten werden. Dies erscheint plausibel, da einmal wegen der hohen Molmasse und der begrenzten Löslichkeit der Komplexe maximal nur ca. 10^{-3} M Lösungen hergestellt werden konnten und zum anderen infolge Linienverbreiterung durch die Quadrupolmomente des Mangans (5/2), der Halogene und des Stickstoffs keine Signale mehr beobachtet wurden.

Die ³¹P-PFT-Spektren von **5a** – e zeigen, daß 1 entsprechend **A** nur zwei Koordinationsstellen am Mangan besetzt und ein P-Atom unkoordiniert bleibt. So findet man für die beiden koordinierten, äquatorialen Phosphoratome $P_{e/e'}$ in erster Ordnung jeweils Singuletts bei tieferem Feld, während für den freien Phosphor je ein Singulett bei höherem Feld beobachtet wird (Tab. 3), deren chemische Verschiebungen nahezu mit denjenigen von 1 übereinstimmen (1 in CD₂Cl₂, ext. Standard 85 proz. Phosphorsäure: $\delta = +26.3$). Sowohl die chemischen Verschiebungen von $P_{e/e'}$ als auch die Linienstrukturen zeigen, daß in **5a** – e die Halogene bzw. Pseudohalogene in *cis*-Positionen zum zweizähnigkoordinierenden Liganden 1 stehen (A). Bei einer *cis-trans*-Anordnung der koordinierten P-Atome entsprechend **B** sollten zwei Signale unterschiedlicher chemischer Verschiebung und damit auch Kopplungen zwischen den beiden P-Atomen auftreten.

Die ³¹P-PFT-Spektren der Verbindungen **6a**–e zeigen zwei ca. 1400–2000 Hz voneinander getrennte Signalgruppen bei tieferem Feld (Tab. 4). Aufgrund der relativen Intensitäten der Signale und ihren Multiplettstrukturen ist eine eindeutige Zuordnung möglich. Für die beiden äquatorialen, zu den CO-Gruppen *trans*-ständigen Phosphoratome $P_{e/e'}$ (Vgl. C) beobachtet man in erster Ordnung infolge PMnP-Kopplung jeweils ein Dublett, während das Signal des axialen, *trans* zu den Halogenen bzw. Pseudohalogenen koordinierten Phosphors P_a ebenfalls infolge der Kopplung mit P_{e/e'} eine Triplettstruktur zeigt (Tab. 4). Es liegen sowohl die chemischen Verschiebungen δ und die Koordinationsverschiebungen $\Delta = \delta_{\rm K} - \delta_{\rm L}^{25}$ als auch die jeweiligen Kopplungskonstanten ²*J*(PMnP) im Erwartungsbereich für Metall-Phosphan-Komplexe²⁶⁻²⁸⁾. Wegen teilweise großer Linienbreiten infolge der Quadrupolmomente vom Mn, der Halogene und von N konnten nicht bei allen Verbindungen die Kopplungskonstanten bestimmt werden.

Tab. 3. ³¹P-NMR-Spektren von XMn(CO)₃(R₂PCH₂)₂C(CH₃)CH₂PR₂ (5, R = C₆H₅) in CD₂Cl₂. Chemische Verschiebungen δ und Koordinationsverschiebungen $\Delta = \delta_K - \delta_L^{(a)}$ (ext. Standard 85 proz. Phosphorsäure)

Verb.	Chem. Verschiebung $\delta P_{e/e}$	Δ	Chem. Verschiebung $\delta P_{unkoordiniert}$	Δ
5a	-30.8 (s)	-57.1	+28.2(s)	+ 1.9
Ъ	-28.2 (s)	- 5 4 .5	+28.0 (s)	+ 1.7
с	-25.2 (s)	-51.5	+28.3 (s)	+2.0
d	$-31.2 (mc)^{b}$	- 57.5	+27.8 (s)	+ 1.5
e	-31.4 (mc) ^{b)}	- 57.7	+27.8 (s)	+ 1.5

Absol. Fehler für δ 0.1, für Δ 0.2.

^{a)} 1 in $CD_2Cl_2: \delta = +26.3. - {}^{b)}$ Siehe Text.

Tab. 4. ³¹P-NMR-Spektren von XMn(CO)₂(R₂PCH₂)₃CCH₃ (6, R = C₆H₅) in CD₂Cl₂. Chemische Verschiebungen δ , Koordinationsverschiebungen $\Delta = \delta_{\rm K} - \delta_{\rm L}^{\rm av}$ und Kopplungskonstanten ²J(PMnP) (ext. Standard 85 proz. Phosphorsäure)

Verb.	δ	² J(PMnP) Hz	Δ	δ	² J(PMnP) Hz	Δ
6a	-67.5 (t, 1 P)	39	-93.8	- 22.4 (d, 2 P)	37	- 48.7
b	-69.3 (t, 1 P)	47	-95.6	- 21.5 (d, 2 P)	35	-47.8
с	- 70.1 (mc, 1 P)	_ b)	- 96.4	- 20.1 (d, 2 P)	36	46.4
d	- 60.0 (mc, 1 P)	_ ^{b)}	- 86.3	24.0 (mc, 2 P)	b)	- 50.3
e	- 60.4 (mc, 1 P)	b)	- 86.7	- 25.2 (d, 2 P)	34	-51.5

Absol. Fehler für δ 0.1, für Δ 0.2; für ²J(PMnP) 4 Hz.

^{a)} Bezogen auf 1 in CD_2Cl_2 : $\delta = +26.3$ (ext. Standard 85 proz. Phosphorsäure). - ^{b)} Siehe Text.

In der Verbindungsreihe **6a**-c beobachtet man für P_a eine zunehmende Tieffeldverschiebung und damit eine Zunahme der Koordinationsverschiebung Δ . Dies ist unter Annahme gleicher Bindungswinkel an P_a vermutlich auf das zunehmende π -Acceptorvermögen in der Reihe Cl, Br, I zurückzuführen. Die gleichzeitige Abnahme der Koordinationsverschiebung Δ für $P_{e/e'}$ läßt sich dagegen weniger durch das steigende σ -Donorvermögen der drei Halogene erklären als durch die zunehmende sterische Wechselwirkung, wodurch sich die Bindungswinkel an $P_{e/e'}$ ändern. Bei **6d** und e wird dies besonders deutlich, da hier $P_{e/e'}$ eine stärkere Tieffeldverschiebung (lineare Anordnung der N₃bzw. NCO-Gruppen) und das Signal für P_a infolge des wesentlich schwächeren Acceptorvermögens eine deutlich geringere Verschiebung nach tieferem Feld erfährt.

Alle Spektren wurden nur als Systeme 1. Ordnung diskutiert, da eine Spektrenanalyse höherer Ordnung wegen der geringen Auflösung infolge ungenügender Löslichkeiten nicht angebracht erschien. Weder für 5a - e noch für 6a - e waren auswertbare Massenspektren zu erhalten, da die Verbindungen, wenn überhaupt, erst bei sehr hohen Temperaturen und dann nicht unzersetzt verdampfen.

Wir danken der Deutschen Forschungsgemeinschaft, dem Verband der Chemischen Industrie, Fonds der Chemie, und der Hoechst AG Frankfurt/Main für wertvolle Unterstützung.

Experimenteller Teil

Alle Umsetzungen wurden unter N₂-Atmosphäre durchgeführt. Die Lösungsmittel waren getrocknet (Molekularsieb, Fa. Merck, Darmstadt) und N₂-gesättigt. Das zur Chromatographie benützte neutrale Aluminiumoxid Woelm (Fa. ICN Pharmaceuticals u. Co., Eschwege) wurde bei 400 °C i. Vak. von Sauerstoff befreit, mit N₂-gesättigtem Wasser auf die Aktivitätsstufe II eingestellt und anschließend unter N₂ aufbewahrt. Die Säulenlänge betrug 20 cm, der Durchmesser 2.5 cm. Alle Schmelzpunkte wurden in abgeschmolzenen Kapillaren ermittelt und sind unkorrigiert. Die photochemischen Umsetzungen wurden in Quarz-Schlenkrohren mit einer Hg-Tauchlampe, Typ TQ 150 Z 3 (Fa. Original Hanau Quarzlampen GmbH, Hanau) durchgeführt.

IR-Spektren: Beckman IR-7 Spektralphotometer mit CsI-Austauschoptik sowie Beckman IR-12 Gitterspektrograph. – FIR-Spektren: Beckman Fourier-Spektralphotometer IR-720. – Raman-Spektren: Cary 82 Spektrometer der Fa. Varian mit Krypton-Laser, Fa. Spectra Physics, Erregerlinie 647.1 nm. – ¹³C- und ³¹P-NMR-Spektren: JEOL JNMS-100-MHz-Spektrometer mit Nicolet-Rechner Typ 1080. – Massenspektren: Modell CH-5 (IXE-5 Quelle) der Fa. Varian MAT (70 eV). – Molmassen: Fa. Hewlett-Packard, Dampfdruckosmometer Mechrolab 301 A. – Leitfähigkeiten: Meßgerät der Fa. WTW, Typ LF 39.

Tricarbonyl $\{I, I, I-tris[(diphenylphosphino)methyl]ethan-P, P', P''\}mangan(I)-perchlorat und -te$ traphenylborat (**3a**,**b**) wurden nach der Literatur³) dargestellt.

Tricarbonyl {1,1,1-tris[(diphenylphosphino)methyl]ethan-P,P',P'']mangan(1)-halogenide (4a – c): Die Lösung von 520 mg (0.54 mmol) 2^{3} in ca. 3 ml Aceton wird vorsichtig mit ca. 20 ml Ether verdünnt. Nun wird unter kräftigem Rühren ca. 20 proz., wäßrige Halogenwasserstofflösung zugetropft, wobei 4a – c auszukristallisieren beginnen. Nach Zusatz von ca. 2 ml HX-Lösung ist der maximal mögliche Umsatz erreicht. Man trennt durch Dekantieren die tiefgelbe Reaktionslösung ab, wäscht 4a – c fünfmal unter Dekantieren mit ca. 20 ml Ether und trocknet i. Hochvak. Die Verbindungen kristallisieren mit Solvat-Wasser und -Halogenwasserstoff aus. Auch nach zweimaligem Umkristallisieren aus CH₂Cl₂/Petrolether und mehrtägigem Trocknen i. Hochvak. können 4a und b nicht solvatfrei erhalten werden. Farblose (4a) bis hellgelbe (4b, c) Kristalle, löslich in allen polaren Lösungsmitteln und in chlorierten Kohlenwasserstoffen, unlöslich in aromatischen und aliphatischen Kohlenwasserstoffen. Ausb. ca. 70% (weitere Daten: Tab. 5).

4a: IR (KBr): 2400 s, br (Cl···HOH); (CH₂Cl₂): 2038 st, 1969 st (CO); 1620 s, br (Cl···HCl); 668 m-st, 628 st, 555 m-st (MnCO); 490 s-m, 465 s-m, br (MnC); (Polyethylen): 205 s-m, 182 m, br (MnP). – Ra (CH₂Cl₂): 2032 m, p (A₁) 1958 m, dp (E) (CO); 663 m, p (A₁), 554 s, dp (E) (MnCO); 497 st, p (A₁), 461 m, dp (E) (MnC); 211 sst, p (A₁) (MnP). – ³¹P-NMR (CD₂Cl₂, ext. Standard 85 proz. H₃PO₄): $\delta = -26.75$ (m).

4b: IR (KBr): 2300 s, br (Br \cdots HOH); (CH₂Cl₂): 2035 st, 1967 sst (CO); 1630 s, br (Br \cdots HBr); 670 m, 627 st, 555 m-st (MnCO); 490 s, 460 s-m (MnC); (Polyethylen): 210 s-m (MnP). – Ra (fest): 2026 s-m, 1958/1938 m (CO); 666 s, 624 s, 551 s-m (MnCO); 501 s-m, 463 s-m (MnC); 211 m-st (MnP).

4c: IR (CH₂Cl₂): 2035 st, 1967 sst (CO); 670 m, 627 m-st, 555 m (MnCO); 490 s, 460 s-m, br (MnC). – Ra (fest): 2030 m, 1958/1942 m (CO); 664 s, 553 s (MnCO); 501 s-m, 461 s-m (MnC); 210 st (MnP).

Tricarbonyl{1,1,1-tris[(diphenylphosphino)methyl]ethan-P,P',P''}-mangan(1)-azid(4d) wurde aus 780 mg (0.98 mmol) 4a, gelöst in 40 ml CHCl₃, durch Umsetzung mit überschüssigem NaN₃ nach bekannter Methode⁴⁾ erhalten. Nach Umkristallisieren aus heißem Wasser (ca. 50 ml) farblose Kristalle; Löslichkeiten wie 4a – c. Ausb. 671 mg (85%) (weitere Daten in Tab. 5).

IR (CH₂Cl₂): 2030 st (CO); 2005 m (N₃); 1965 sst (CO); (KBr): 1640 s (N₃ \cdots HOH); (CH₂Cl₂): 663 m, 650 s, 625 m, 553 m (MnCO); 490 s, 460 s, br (MnC); (Polyethylen): 208 s-m (MnP). – Ra (fest): 2028 m, 1962/1941 m (CO); 1240 s (N₃); 663 s, 555 s (MnCO); 504 m, 461 s-m (MnC); 211 st (MnP).

 $Halogenotricarbonyl \{1,1,1-tris[(diphenylphosphino)methyl]ethan-P,P'\}mangan(1) (5a-c): Die Lösung von ca. 1 mmol der entsprechenden Halogenide <math>4a-c$ in ca. 40 ml CH₂Cl₂ wird unter Rühren 3 h mit UV-Licht bestrahlt. Anschließend chromatographiert man in CH₂Cl₂ an neutralem Aluminiumoxid, wobei nichtumgesetzte Ausgangsverbindungen 4a-c und die mitentstandenen Halogenodicarbonylverbindungen 6a-c weitgehend abgetrennt werden. Die gelben Eluate werden aufgefangen und erneut unter gleichen Bedingungen chromatographiert. Dann engt man auf ca. 30 ml ein, versetzt mit ca. 40 ml Petrolether und engt erneut auf ca. 20 ml ein. Dabei beginnen die Verbindungen 5a-c zu kristallisieren. Man versetzt langsam mit weiteren 40 ml Petrolether und läßt weiter auskristallisieren. Nach Filtrieren und Trocknen i. Hochvak. erhält man hellgelbe (5a) bis gelbe (5b, c) feine Nädelchen, welche sich in Benzol, THF, chlorierten Kohlenwasserstoffen und etwas in Aceton und Ether lösen, während sie in Petrolether unlöslich sind. Ausb. ca. 70% (weitere Daten Tab. 5).

Azidotricarbonyl{1,1,1-tris[(diphenylphosphino)methyl]ethan-P,P'}mangan(1) (5d): Die Lösung von 403 mg (0.5 mmol) 4d in ca. 20 ml CH₂Cl₂ wird unter Rühren 3 h mit UV-Licht bestrahlt. Man engt i. Vak. zur Trockne ein und extrahiert bei 20°C dreimal mit ca. 20 ml Benzol. Nach Vereinigung der Extrakte entfernt man erneut das Lösungsmittel i. Vak. und chromatographiert zweimal in CH₂Cl₂, wie bei 5a-c angegeben. Man erhält hellgelbe, nadelförmige Kristalle, deren Löslichkeiten 5a-c entsprechen. Ausb. 254 mg (63%) (weitere Daten in Tab. 5).

Tricarbonylisocyanato {1,1,1-tris[(diphenylphosphino)methyl]ethan-P,P'}mangan(1) (5e): Man bestrahlt eine Lösung von 0.86 bzw. 1.08 g (1 mmol) **3a** bzw. **b** in ca. 30 ml Aceton 4 h mit UV-Licht. Die weitere Aufarbeitung erfolgt wie vorstehend. Hellgelbe Kristalle mit gleichen Lösungseigenschaften wie **5a** - **c**. Ausb. 0.59 g (73%) (weitere Daten in Tab. 5).

 $\label{eq:halogeno-und} Halogeno- und Pseudohalogenodicarbonyl \{1,1,1-tris[(diphenylphosphino)methyl]ethan-P,P',P''\}-mangan(1) (\mathbf{6a-e})$

a) Durch 4stdg. UV-Bestrahlung von ca. 0.86 bzw. 1.08 g (ca. 1 mmol) **3a** bzw. **b**, gelöst in ca. 25 ml Methanol, bei Anwesenheit von etwa 2-3 g (großer Überschuß) suspendiertem Alkalimetallhalogenid bzw. -pseudohalogenid. Die schwerlöslichen Komplexe **6a** – **e** kristallisieren aus der Reaktionslösung aus, man filtriert sie ab und wäscht enthaltenes Alkalimetallhalogenid bzw. -pseudohalogenid zweimal mit ca. 20 ml N₂-gesättigtem Wasser heraus. Eine weitergehende Reinigung erfolgt durch Lösen von **6a** – **e** in ca. 40 ml CH₂Cl₂ und vorsichtiges Fällen mit ca. 50 ml Petrolether. Die Komplexe sind dunkelgelb (**6a**, **d**, **e**) bis braun (**6b**, **c**) und lösen sich in chlorierten Kohlenwasserstoffen und THF mäßig, während sie in allen anderen, gebräuchlichen organischen Lösungsmitteln nahezu unlöslich sind. Ausb. ca. 75%, weitere Daten in Tab. 5.

b) Die Lösung von ca. $0.5 \text{ mmol } 5\mathbf{a} - \mathbf{e}$ in ca. 30 ml Aceton wird unter Rückfluß erhitzt. Nach etwa 2 h beginnt die Abscheidung von $6\mathbf{a} - \mathbf{e}$, nach ca. 8 h ist die Umsetzung beendet. Man läßt abkühlen, filtriert und trocknet i. Hochvak. Ausb. ca. 80%, nach den IR-Spektren identisch mit den Produkten nach a).

Ś
p
E
ŝ
4
en
g L
qn
.Ц
ef
>
ler
ě
kt
Inc
lzr
ne
Ę.
Š
pu
2
ter
kei
11g
täb
ett
Ę
en,
ISS
m
10
Σ
en,
ys.
nal
Ā
i.
ab.

1979			Ko	mplexch	emie	polyfı	inktic	neller	Liga	nden,	51				345
Schmp. °C	215 ^{c)}	174 0	188 ¹⁾	169 ^{e)}	209 ^{e)}	215 °)	217 ^{c)}	158	187	199 ¹⁾	204 ¹⁾	239 ⁰	196 ¹⁾	195	
Verdünnung ^{b)} Leitfähigkeit ^{c)}	1598 54 ^{d)}	4217 68 ^{d)}	5088 71 ^{d)}	3098 76 ⁴⁾	1483 keine ^{d)}	1763 keine ^{d)}	3255 keine ^{d)}	2036 keine ^{d)}	1318 keine ^{d)}	3515 keine ^{a)}	4008 keine ^{d)}	4398 keine ^{a)}	1922 keine ^{d)}	2322 kcine ^{d)}	in c
z				5.10 5.05				5.22 5.09	1.74 1.77				5.40 5.63	1.80 1.67	1
Mn	6.44 6.19	6.09 6.22	6.17 6.32	6.67 6.45	6.88 7.15	6.51 6.48	6.17 6.38	6.82 6.46	6.82 6.65	7.13 6.95	6.73 6.89	6.37 6.20	7.07 7.20	7.07 7.30	
alogen	8.31 7.89	13.29 12.96	14.25 14.32		4.43 4.67	9.47 9.38	14.25 14.02			4.60 4.51	9.79 9.73	14.71 14.92			
НН	4.96 4.94	4.64 4.58	4.41 4.58	5.02 4.91	4.92 4.90	4.66 4.79	4.41 4.68	4.88 5.25	4.88 5.41	5.10 5.01	4.82 4.65	4.56 1	5.06 5.18	5.06 4.88	
С	61.91 61.60	58.59 58.32	59.34 61.59 ⁸⁾	64.16 64.43	66.13 65.67	62.65 63.08	59.34 60.08	65.59 65.75	67.08 66.83	66.98 67.57	63.32 63.99	59.88 59.80	66.41 66.90	67.96 67.83	
	Ber. Gef.	Ber. Gef.	Ber. Gef.	Ber. Gef.	Ber. Gef.	Ber. Gef.	Ber. Gef.	Ber. Gef.	Ber. Gef.	Ber. Gef.	Ber. Gef.	Ber. Gef.	Ber. Gef.	Ber. Gef.	
Summenformel Molmasse (ber./gef. ^{a)})	[C44H ₃₉ MnO ₃ P ₃]- CI · H ₂ O · HCl (853.6/-)	$[C_{44}H_{39}MnO_3P_3] - Br \cdot H_2O \cdot 1/2 HBr (902.0/-)$	[C44H39MnO3P3]I (890.6/)	[C ₄₄ H ₃₉ MnO ₃ P ₃]- N ₃ H ₂ O (823.7/)	C44H39CIMnO3P3 (799.0/765)	C44H30BrMnO3P3 (843.5/890)	C ₄₄ H ₃₉ IMnO ₃ P ₃ (890.5/810)	C44H39MnN3O3P3 (805.6/829)	C ₄₅ H ₃₉ MnNO ₄ P ₃ (805.6/730)	C ₄₃ H ₃₉ CIMnO ₂ P ₃ (771.0/781)	C ₄₃ H ₃₉ BrMnO ₂ P ₃ (815.5/595)	C ₄₃ H ₃₉ IMnO ₂ P ₃ (862.5/979)	C ₄₃ H ₃₉ MnN ₃ O ₂ P ₃ (777.6/563)	C44H39MnNO3P3 (777.6/702)	
Verbindung	Tricarbonyl{1,1,1-tris[(diphenylphosphino)- methyl]ethan-P,P',P'}mangan(1)-chlorid-1- Wasser-1-Chlorwasserstoff	Tricarbonyl {1,1,1-tris[(diphenylphosphino)- methyl]cthan- <i>P.,P</i> ',P [*] }mangan(1)-bromid-1- Wasser-0.5-Bromwasserstoff	Tricarbonyl {1,1,1-tris[(diphenylphosphino)- methyl]ethan- <i>P,P',P''</i>]mangan(])-iodid	Tricarbonyl [1,1,1-tris[(diphenylphosphino)- methyl]ethan-P,P,P,"]mangau(1)-azid-1- Wasser	Tricarbonylchloro{1,1,1-tris[(diphenylphos- phino)methyl]ethan- <i>P,P</i> }mangan (1)	Bromotricarbonyl {1,1,1-tris[(diphenylphos- phino)methyl]ethan-P,P }mangan (1)	Tricarbonyliodo [1,1,1-tris[(diphenylphosphino)- methyl]ethan-P,P'}mangan (1)	Azidotricarbonyl [1,1,1-tris] [(diphenylphos- phino)methyl]ethan-P,P'}mangan (I)	Tricarbonylisocyanato{1,1,1-tris[(diphenyl- phosphino)methyl]ethan-P,P'}mangan (I)	Dicarbonylchloro {1,1,1-tris[(diphenylphos- phino)methyl]ethan- <i>P,P</i> , [*] /mangan (I)	Bromodicarbonyl [1,1,1-tris[(diphenylphos- phino)methyl]ethan-P,P',P'',mangan (1)	Dicarbonyliodo{1,1,1-tris[(diphenylphosphino)- methyl]ethan- <i>P,P',P'</i> }mangan (I)	Azidodicarbonyl{1,1,1-tris[(diphenylphosphino)- methyl]ethan-P,P',P''}mangan (I)	Dicarbonylisocyanato{ [1,1,1-tris[(diphenyl-phosphino)methyl]ethan-P,P,P"/mangan []	
	4a	4b	4c	4d	5a	5b	56	5d	5e	6a	6b	96	6d	6e	

^{a)} Osmometr. in CHCl₃. – ^{b)} Liter · mol⁻¹. – ^{c)} cm² Ω^{-1} mol⁻¹. – ^{d)} In CHCl₃. – ^{e)} Gasentwicklung. – ⁿ⁾ Zersetzung. – ^{a)} Zu hoher C-Wert vermutlich durch bei der Verbrennung mitentstandenes Iod vorgetäuscht. Derartige Abweichungen wurden bei iodhaltigen, metallorganischen Verbindungen schon verschiedentlich beobachtet: *J. Ellermann, H. Schössner, A. Haag* und *H. Schödel, J.* Organomet. Chem. **65**, 33 (1974).

Literatur

- ¹⁾ 50. Mitteil.: J. Ellermann, H. A. Lindner und H. Gäbelein, J. Organomet. Chem. 172, 39 (1979).
- ²⁾ J. Ellermann und J. F. Schindler, Chem. Ber. 109, 1095 (1976).
- ³⁾ J. Ellermann und H. A. Lindner, Z. Naturforsch., Teil B 31, 1350 (1976).
- 4) J. Ellermann und W. Uller, Chem. Ber. 103, 3932 (1970).
- ⁵⁾ R. J. Angelici, F. Basolo und A. J. Poe, J. Am. Chem. Soc. 85, 2215 (1963).
- ⁶⁾ C. D. Garner und B. Hughes, J. Chem. Soc., Dalton Trans. 1974, 735.
- ⁷⁾ R. H. Reimann und E. Singleton, J. Chem. Soc., Dalton Trans. 1973, 841.
- 8) C. C. Addison, R. Davis und N. Logan, J. Chem. Soc., Dalton Trans. 1974, 2070.
- 9) F. H. Johannsen und W. Preetz, J. Organomet. Chem. 104, 79 (1976).
- ¹⁰⁾ E. W. Abel und S. P. Tyfield, Chem. Commun. 1968, 465.
- ¹¹⁾ R. Uson, V. Riera, J. Gimeno und N. Laguna, Trans. Met. Chem. 2, 123 (1977).
- ¹²⁾ A. M. Bond, R. Colton und M. E. McDonald, Inorg. Chem. 17, 2842 (1978).
- 13) L. F. Wuyts und G. P. Van der Kelen, Inorg. Chim. Acta 23, 19 (1977).
- ¹⁴⁾ J. R. Wagner und D. Hendricker, J. Organomet. Chem. 91, 321 (1975).
- ¹⁵⁾ V. Valenti, P. Cariati, C. Forese und G. Zerbi, Inorg. Nucl. Chem. Lett. 3, 237 (1967).
- ¹⁶⁾ J. G. Dunn und D. A. Edwards, J. Organomet. Chem. 102, 199 (1975).
- ¹⁷⁾ D. H. Paye, Z. A. Paye, R. Rohmer und H. Frye, Inorg. Chem. 12, 2540 (1973).
- 18) J. R. Wagner und D. G. Hendricker, J. Inorg. Nucl. Chem. 37, 1375 (1975).
- ¹⁹⁾ M. F. Farona und K. F. Kraus, J. Chem. Soc., Chem. Commun. 1972, 513.
- ²⁰⁾ I. S. Butler, N. J. Coville und H. K. Spendjian, J. Organomet. Chem. 43, 185 (1972).
- ²¹⁾ K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, 3rd. Edition, S. 276, John Wiley and Sons, New York 1978.
- ²²⁾ R. A. Bailey, S. L. Kozak, T. W. Michelsen und W. N. Mills, Coord. Chem. Rev. 6, 407 (1971).
- ²³⁾ J. Ellermann, H. Gäbelein und W. Uller, Z. Anorg. Allg. Chem. 416, 117 (1975).
- ²⁴⁾ F. A. Cotton und G. Wilkinson, Anorganische Chemie, 3. Aufl., S. 739, Verlag Chemie, Weinheim 1974.
- ²⁵⁾ S. O. Grim, D. A. Wheatland und W. McFarlane, J. Am. Chem. Soc. 89, 5573 (1967).
- ²⁶⁾ D. A. Edwards und J. Marshalsea, J. Organomet. Chem. 96, C 50 (1975).
- ²⁷⁾ T. H. Whitesides und R. A. Budnik, Inorg. Chem. 14, 664 (1975).
- ²⁸⁾ R. J. Mynott, P. S. Pregosin und L. M. Venanzi, J. Coord. Chem. 3, 145 (1973).

[27/79]